

Formations au service de l'industrie et de la recherche Parcours opérateur micro nanotechnologies

Les étapes et techniques de fabrication d'un produit semi -conducteur Réf. PQ5M1 4,5 jours (35 heures)

OBJECTIFS DE FORMATION

Avoir une vue d'ensemble de la fabrication d'un circuit Identifier les différents ateliers et leurs rôles Se familiariser avec le vocabulaire propre à la production en microélectronique Comprendre les phénomènes des couches minces

Au cours de la formation les professionnels 40-30 sensibiliseront les participants au contraintes et exigences du métier (savoir -être)

PUBLIC CONCERNE et PRÉ-REQUIS

Nouveaux embauchés en tant qu'opérateurs et techniciens en micro nanotechnologies

INNOVATION PEDAGOGIQUE

Nombreux outils de démonstration, vidéo et photolangage.

Alternance entre théorie et illustrations en visitant les ateliers de maintenance de 40-30 (électronique, RF, implants, vannes, équipements, nettoyage des pièces, etc.), exercices d'application.

Transfert du savoir-faire 40-30 : 30 ans d'expérience dans la maintenance et la réparation dans le domaine du vide, de l'électronique, de la RF et des outils de régulation de mesures relatives à ces technologies. QCM en début et en fin de formation.

Equipement de gravure ou de dépôt

FORMATEURS PRINCIPAUX

Michel THIAM: Docteur en physique des surfaces, 20 ans d'expérience dans la conception et la maintenance d'équipements liés à l'ultra vide, certifié COFREND ETANCHEITE niveau 2.

Jacques CHOMEL : Maîtrise d'électronique, électronicien, chargé d'affaires à 40-30 depuis plus de 20 ans et certifié COFREND ETANCHEITE niveau 2.

PRIX PAR PERSONNE

Nous consulter

Sessions ouvertes à partir de 4 inscrits et limitées à 8 participants

PROGRAMME

1,5 jour

1.introduction à la microélectronique

Historique, le marché, les produits, les principaux fabricants et équipementiers

2. la fabrication d'un circuit

Les plaquettes de silicium Les boites de transport (SMIF, FOUP) Fabrication d'un circuit TP/Démonstration

3. les différents ateliers

Traitement thermiques (ou diffusion) Photolithographie Dépôts Gravure Chemical mechanical Polishing Un atelier à part : le nettoyage Matériaux de chambres de réacteur TP/Démonstration

Base de la conception d'un wafer Base de la chimie et physique liée à l'environnement de la gravure électronique

0,5 jour

Principes et techniques de dépôts de films en couches minces:

matériaux, substrat méthodes de dépôt physique et chimique caractérisation des couches minces

1 jour

Les bases de la lithographie optique Les bases de la lithogravure électronique L'implantation ionique Changement dans le four d'oxydation : oxydation épaisse TP/Démonstration

DATES & LIEUX

Des sessions sont programmées tout au long de l'année à la demande.